トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS

過去のセミナー/2010年度 のバックアップ(No.9)


2010年度 組合せ数学セミナー

  • 世話人: 溝口 佳寛(九大数理),坂内 英一(九大数理),谷口哲至(松江高専)

第2回 2010年 7月10日(土)

※ 詳細は未定ですが,前回と同様にやっていく予定です。

  • プログラム
    講演者タイトル
    平坂 貢On balanced coherent configurations with a fiber of prime size.
    宗政 昭弘TBA
    田中 立志TBA
    谷口 哲至TBA
 
  • アブストラクト

平坂 貢(釜山大学)

  • タイトル: On balanced coherent configurations with a fiber of prime size.
  • アブストラクト:

Let G be a permutation group of a finite set . Then is the disjoint union of the orbits of G. Suppose that the actions of G on s have the same permutation character. Then the orbits of G acting naturally on forms a balanced coherent configuration. In this talk we focus on this situation under the assumption the size of is a prime to show some related topics ans results. This is a joint work with Reza Sharafdini.

 

第1回 2010年 5月 8日(土)

  • プログラム
    講演者タイトル
    12:40-12:45開会宣言(谷口 哲至)
    12:45-13:35栗原 大武球への埋込みを通じて得られる新しいQ多項式スキームの同値条件について
    13:45-14:35奥田 隆幸コンパクトリー群上のデザインと符号についての不等式
    14:45-15:35溝口 佳寛有向グラフに対するスペクトラル法による分割について
    15:45-16:35Kissani PereraLaplacian energy of Directed Graphs
    16:45-17:35重住 淳一On maximality of distance sets with the structure of Johnson graph
    17:35-17:40総括(坂内 英一)
 
  • アブストラクト

栗原 大武 (東北大学大学院 理学研究科)

  • タイトル: 球への埋込みを通じて得られる新しいQ多項式スキームの同値条件について(野崎寛氏との共同研究)
  • アブストラクト:

1977年にLarmanとRogersとSeidelによって ユークリッド空間内の2距離集合の点の個数がある程度大きくなると距離の2乗比に出てくる ある値Kが整数になることが示された。 そして2005年に坂内英一氏と坂内悦子氏によって クラス2の原始的なアソシエーションスキームを球面に埋め込んだ際に このKがアソシエーションスキームの指標表の中に出てくることが示された。 一方2009年に野崎寛氏によって Larman達の結果を一般のs距離集合に対して拡張できることが示された。

本講演ではこの野崎氏の結果とクラスdQ多項式スキームとの対応があり、 それが坂内氏達の結果の一般化になっていることを見ていく。 更に逆に一般のクラスの対称なアソシエーションスキームを 球面に埋め込んだ際に出てくるKの一般化にあたる定数達が指標表に出てくると仮定すると このアソシエーションスキームはQ多項式スキームになることを見ていく。

奥田 隆幸 (東京大学大学院 数理科学研究科)

  • タイトル: コンパクトリー群上のデザインと符号についての不等式
  • アブストラクト:

球面上のデザインと符号の理論において、「堅いデザイン」は重要な研究対 象であるが、その定義には以下の重要な事実が用いられる。すなわち、“デザイン、符号 それぞれにおいてFisher型と呼ばれる不等式が存在し、またその不等式の等号成立の場合 には、デザインであることと符号であることは同値”となることである。 この結果の一般化として、これまでに rank 1 のコンパクト対称空間、実および複素 Grassman 多様体などにおいて同様の結果が成り立つことが知られている。 この講演では、一般のコンパクトリー群について、表現論の言葉を用いてデザインと符号 を定義し、Fisher型不等式の「コンパクトリー群」版、またその等号成立の場合にデザイ ンと符号が結びつくことを紹介する。

溝口 佳寛 (九州大学大学院 数理学研究院)

  • タイトル: 有向グラフに対するスペクトラル法による分割について
  • アブストラクト:

グラフのスペクトラル法による分割(クラスタリング)について紹介します. 無向グラフについての理論背景と応用例の紹介, そして, その有向グラフへの 拡張可能性について述べます.

Kissani Perera (九州大学大学院 数理学府)

  • タイトル: Laplacian energy of Directed Graphs
  • アブストラクト:

Energy has been studied in mathematical perspective as well as physical perspective for several years ago. In spectral graph theory, the eigenvalues of several kinds of matrices have been studied, of which Laplacian matrix attracted the greatest attention [2]. Recently, in 2009, Adiga considered Laplacian energy of directed graphs using skew Laplacian matrix, in which degree of vertex is considered as total of the out-degree and the in-degree. Since directed graphs play an important role in identifying the structure of web-graphs as well as communication graphs, we consider Laplacian energy of simple directed graphs, complete directed graphs and their line graphs and find some relations relevant to arc addition of directed graphs by using the general definition of Laplacian(Kirchoff) matrix. Unlike in [1], we derived two types of equations for simple directed graphs and completed directed graphs with vertices. Our objective extended to enumerate the structure of directed graphs using the energy concept. For that we consider the class which consists of non isomorphic graphs with energy less than some and find 47 non isomorphic directed graphs for class .

References
[1] C. Adiga and M. Smitha. On the skew laplacian energy of a digraph. International Mathematics Forum 4, 39:1907—1914, 2009.
[2] D.M. Cvetkovic, M. Doob, and H. Sachs. Normalized cuts and image segmentation. In Spectra of Graphs: Theory and Applications, volume 3, 1995.

重住 淳一 (九州大学大学院 数理学研究院)

  • タイトル: On maximality of distance sets with the structure of Johnson graph
  • アブストラクト:

In the classification of the maximal 2-distance sets, Lisoněk considered the 2-distance sets which include the structure of triangular graph T(n) (= J(n, 2)). As a generalization, we consider the maximal distance sets on with the structure of Johnson graph J(n, m). In this talk, we determine the condition that the realizations of J(n, m) on should be maximal. Furthermore, we would like to talk about some maximal distance sets with the structure of Johnson graph.

This is joint work with Eiichi Bannai and some members of the program “Excellent Students in Science” of Fuculty of Science, Kyushu University.