Hakata Workshop;Winter Meeting 2020 の変更点
Top/Hakata Workshop;Winter Meeting 2020
- 追加された行はこの色です。
- 削除された行はこの色です。
- Hakata Workshop;Winter Meeting 2020 へ行く。
- Hakata Workshop;Winter Meeting 2020 の差分を削除
* Hakata Workshop; Winter Meeting 2020 [#b98f30e8] ''〜Discrete Mathematics and its Applications〜'' #br Our purpose in this meeting is giving an opportunity to make a speech and to communicate with researchers who study various fields not only Combinatorics. Further information is available from the organizers below. **Organizers [#k4943cc4] -[[Yoshihiro Mizoguchi:http://imi.kyushu-u.ac.jp/~ym/]] (Kyushu University),~ -[[Tetsuji Taniguchi:http://researchmap.jp/tetsuzit-14/]] (Hiroshima Institute of Technology),~ -Osamu Shimabukuro (Nagasaki University),~ -Makoto Tagami (Kyushu Institute of Technology),~ -Hirotake Kurihara (Kitakyushu National College of Technology),~ -Shuya Chiba (Kumamoto University),~ -Tsuyoshi Miezaki (University of the Ryukyus),~ -[[Daniel GAINA:https://www.imi.kyushu-u.ac.jp/academic_staffs/view/210]] (Kyushu University),~ -[[Ryoya Fukasaku:https://www.math.kyushu-u.ac.jp/teachers/view/246]](Kyushu University). **Supported by [#w8008bff] -[[Graduate School of Mathematics, Kyushu University:http://www.math.kyushu-u.ac.jp/eng/]] -JSPS KAKENHI(Grant-in-Aid for Scientific Research (C)) Grant Number 25400217. -JSPS KAKENHI(Grant-in-Aid for Scientific Research (C)) Grant Number 17K05346 -JSPS KAKENHI(Grant-in-Aid for Scientific Research (C)) Grant Number 25400217, 17K05346, 19K03425, 18K03245 **Date [#o4c657b0] February 21 and 22, 2019 **Location [#re60b742] -Firday, February 21 九州大学伊都キャンパス(福岡市西区元岡744)ウェスト1号館D棟4階オーディトリアム前ホワイエ(see https://www.kyushu-u.ac.jp/ja/campus/ito/) -Saturday, February 22 Seminar Room P (4F) in Reference Eki Higashi Building. 1-16-14 Hakata-Eki-Higashi, Hakata-Ku, Fukuoka City, 812-0013 (see http://www.re-rental.com/ , [[Google maps:http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=%E7%A6%8F%E5%B2%A1%E5%B8%82%E5%8D%9A%E5%A4%9A%E5%8C%BA%E5%8D%9A%E5%A4%9A%E9%A7%85%E6%9D%B11%E4%B8%81%E7%9B%AE16-14&aq=&sll=33.590188,130.425417&sspn=0.012888,0.021157&ie=UTF8&hq=&hnear=%E6%97%A5%E6%9C%AC,+%E7%A6%8F%E5%B2%A1%E7%9C%8C%E7%A6%8F%E5%B2%A1%E5%B8%82%E5%8D%9A%E5%A4%9A%E5%8C%BA%E5%8D%9A%E5%A4%9A%E9%A7%85%E6%9D%B1%EF%BC%91%E4%B8%81%E7%9B%AE%EF%BC%91%EF%BC%96%E2%88%92%EF%BC%91%EF%BC%94&ll=33.591064,130.424795&spn=0.012887,0.021157&z=16]] ) **Program [#p912e234] -Friday, February 21 |16:00--17:30|[[ Poster Session (Software in Mathematics Demonstration Track in Hakata Workshop 2020):http://imi.kyushu-u.ac.jp/lasm/hakata2020/]]| -Saturday, February 22 ||~Speaker|~Title| |14:37--14:40|>|Opening (Tetsuji Taniguchi)| |14:40-15:20| Shuya Chiba (Kumamoto University) |[[Induced nets and Hamiltonicity of claw-free graphs>#g06f01f8]]| |15:30-16:10| Yuki Irie (Tohoku University) |[[Representations of Symmetric Groups and the Game of Maya>#o7e092f2]]| |16:20-17:00|Hiroyasu Hamada(National Institute of Technology, Sasebo College) |[[C^*-algebras generated by multiplication operators and composition operators by functions with self-similar branches>#w478a60f]]| |17:10-17:50| Tatsuyoshi Hamada (Nihon University)| [[MathLibre : Mathematical Software Environment>#te4fa8d2]] | |17:50--17:55|>|Closing(Yoshihiro Mizoguchi)| **List of Poster session speakers [#g70120aa] ***[[Software in Mathematics Demonstration Track in Hakata Workshop 2020:http://imi.kyushu-u.ac.jp/lasm/hakata2020/]] [#rd85c2ee] +伊藤 大世(専修大学)HISTの存在性を保証する次数和条件について +太田 友, 鎌田 泰彰, 木本 雄也, 土井 悠太, 吉原 周 (九州大学大学院数理学府) 曲面グラフの3Dプリント +石原 侑樹 (立教大学理学研究科) Modular Techniques を用いた効率的な局所化操作の計算 +本田龍一 (九州大学確率解析研究センター) Mathematicaによる干渉ブラウン運動の数値シミュレーションと可視化 +弓井 寛太 (長崎大学教育学部中学校教育コース数学専攻) Haskellから学ぶ圏論 +新谷 樹生 (九州工業大学 大学院 情報工学府 学際情報工学科 システム情報工学専攻) ゼロサプレス型二分決定グラフを利用したスリザーリンクソルバーの高速化 +中邑 聡史 (九州大学大学院数理学府) 格子上の基底簡約アルゴリズムの開発 +林 澪央 (九州工業大学大学院学際情報工学専攻) 位相的データ解析について -R言語による実装- +有賀 光佑 (九州大学大学院数理学府) domineeringに対する強化学習の適用 **Abstract [#g06f01f8] *** Shuya Chiba [#he816ee7] -Title: Induced nets and Hamiltonicity of claw-free graphs -Abstract: The connected graph of degree sequence $3,3,3,1,1,1$ is called a net, and the vertices of degree $1$ in a net are called its end-vertices. In 1993, Broersma conjectured that a $2$-connected graph $G$ with no induced $K_{1,3}$ is hamiltonian if every end-vertex of each induced net of $G$ has degree at least $(|V(G)|-2)/3$, which is a generalization of two classical results obtained by Matthews and Sumner (1985) and by Duffus, Gould and Jacobson (1981). In this study, we prove this conjecture in the affirmative by analyzing the difference of the vertex degree between the Ryj\'a\v{c}ek closure and the original graph. *** Yuki Irie [#o7e092f2] -Title: Representations of Symmetric Groups and the Game of Maya -Abstract: In the 1970s, Mikio Sato conjectured that Maya, which is a game played with a Young diagram, is related to representations of symmetric groups. In support of this conjecture, he pointed out that its Sprague-Grundy function can be expressed in a form similar to the hook-length formula. Here, using the Sprague-Grundy function, we can give the winning way of the game. #br In this talk, we present a relation between representations of symmetric groups and Maya. Irreducible representations with degree prime to p play an important role, where p is a prime. *** Hiroyasu Hamada [#w478a60f] -Title: C^*-algebras generated by multiplication operators and composition operators by functions with self-similar branches -Abstract: I talk about definitions and examples of C^*-algebras, definition and examples of composition operators, and my researches. In my researches, I explain C^*-algebras generated by multiplication operators and composition operators by functions with self-similar branches are isomorphic to the C^*-algebras associated with self-similar maps introduced by Kajiwara and Watatani under some condition. *** Tatsuyoshi Hamada [#te4fa8d2] -Title: MathLibre: Mathematical Software Environment -Abstract: MathLibre is a project to archive open source mathematical software and free mathematical documents and offer them on Live Linux system. MathLibre Project is the direct descendant of KNOPPIX/Math Project. It provides a desktop for mathematicians that can be set up easily and quickly. If your machine is not DVD bootable, or has very special hardware devices which MathLibre cannot drive, we recommend you download virtual machine like “Virtual Box”. Once you have installed the virtual machine, you can start our live system from DVD or from ISO image file. The instructions for installing and using the virtual machine can be found in our DVD.