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Chromatic number and Hadwiger number

Let G be a graph. (We only consider simple graphs.)
@ \(G): the chromatic number of G.

@ h(G): maximum size of clique minors in G, called the
Hadwiger number of G.

o~

. \,(:".)7 >
K5—minor
h(G) =5
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Hadwiger's conjecture

Hadwiger's Conjecture (1943)

Every graph with chromatic number k has a Ky -minor.
(Equivalently, VG, h(G) > x(G).)

Hadwiger's conjecture

>

>

>

>

was proved for k = 4 by Dirac (1952);
for k = 5 implies Four Color Theorem (FCT);
is affirmative for k =5 by FCT and Wagner (1937);

is affirmative for k = 6 by Robertson, Seymour and
Thomas (1993) using FCT;

is open for k > 7.
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Hadwiger's conjecture for degree sequences

Let D = (dy, >, ..., d,) be a degree sequence of a graph.
@ \(D) :=max{x(G) : G has deg. seq. D}.
@ h(D) := max{h(G) : G has deg. seq. D}.

Robertson and Song (2009) posed:

Hadwiger's Conjecture for Degree Sequences
For every degree sequence D, h(D) > x(D) holds.

e If Hadwiger's conjecture is true, then Hadwiger's
conjecture for degree sequences is also true.
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Hadwiger's conjecture for degree sequences

Hadwiger's Conjecture for Degree Sequences

For every degree sequence D, h(D) > x(D) holds.

Theorem (Robertson, Song 2009)

Hadwiger's conjecture for degree sequences is true for all near
regular degree sequences.

A degree sequence D = (dy, d, ..., d,) is said to be near
regular if max;{d;} — min;{d;} <1.
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Dvorak and Mohar have proved!

Recently, Hadwiger's Conjecture for Degree Sequences was
confirmed by showing a stronger statement.

Theorem (Dvotdk, Mohar 2012+)
For every degree sequence D, h'(D) > x(D) holds.

o H'(D) :=max{h(G) : G has deg. seq. D}.

@ H'(G): maximum k such that G has a topological
Ki-minor.

@ A topological K,-minor of a graph is a subgraph
isomorphic to a subdivision of K.

e Note: h(G) > H(G), and hence h(D) > H'(D).
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Note on H'(G): Hajés' number

(known as) Hajés' Conjecture

VG, H(G) > x(G).
(Every graph with x = k has a topological Kj-minor.)

Hajés' conjecture
» implies Hadwiger's conjecture, since h(G) > H'(G);
is true for k < 4 by Dirac (1952);
for k = 5 implies Four Color Theorem (FCT);
is false for k > 7 by Catlin (1979);

is false for almost all graphs, by Erdos and Fajtlowicz
(1981);
» is open for k =5,6.
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Counterexample to Hajés conjecture
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Hajos' conjecture

(known as) Hajés' Conjecture

VG, H(G) > x(G).
(Every graph with x = k has a topological Kj-minor.)

Hajés' conjecture

>

>

>

>

>

implies Hadwiger's conjecture, since h(G) > H'(G);
is true for k < 4 by Dirac (1952);

for k = 5 implies Four Color Theorem (FCT);

is false for k > 7 by Catlin (1979);

is false for almost all graphs, by Erdés and Fajtlowicz
(1981);
is open for k =5, 6.
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Dvorak and Mohar's Result

Theorem (Dvotdk, Mohar 2013+)
For every degree sequence D, h'(D) > x(D) holds.

» Their proof involves a lot, and is complicated.
» They did not determine the exact values of h'(D) or
x(D).
We shall give

1. an alternative and very short proof of h(D) > x(D);
(Unfortunately, our argument does not work for proving
H(D) > x(D) so far. )

2. the exact values of /(D) for near regular case;

3. a good bound for x(D) for (near) regular case;
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Some Remarks on
Hajés' Numbers and Chromatic Numbers
for Degree Sequences
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Suppose D = (dy, d>, ..., d,) with d; > dr > --- > d,,.
e If (D) = k, then we have di > k — 1. This means:

h(D) < max{k|di >k —1}.
o Note that, h(D) can be as large as \/n even when
di=---=d,=3.

@ We can greedily color the graph with the degree sequence
D using at most max{k | dy > k — 1} colors.

@ So if the equality h'(D) = max{k | dx > k — 1} holds,
then we conclude h'(D) > x(D) as required.

@ However, this is not true in general.
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Results for regular degree sequences

e D=(d,d,....,d)=(d"), (0<d <n—1,dn:even).
o d:

/ d+1 if d < (n—1)/2:
7(D) [(3+55)n] iFd>(-12

(Theoremo2 |

d+1 (if d < (n—1)/2);
x(D) < { K +F+2>”J if d > (n—1)/2.
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Proof (the upper bound for h'(D))

Show that: /(D) < ( +m>n

@ Let G be a d-regular n-vertex graph with H'(G) = k.

@ Let X be the set of branch vertices of a top. K\-minor.
Y = V(G) — X.
@ Let r be the number of nonadjacent pairs in X.
o eg(X,Y) =3 xde(x)—2r=d|X|—2r =dk —2r.
° eg(X,Y) <X oy dgly) = d|Y|=d(n— k).
@ There are at least r subdividing vertices in Y, hence
r<|Y|=n-—k.
d(n— k) > dk —2r > dk — 2(n — k)
(2d +2)k < (d +2)n. O
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Exact value of h'(D) for near regular case

o D= ((d+1),d"7)

(0<d<n—-1,0<p<n-—1,dn+ p: even).
ed=n—-1—d.

(d+2 ifdg”;2 and p > d + 2;
d+1 ifdg”;2 and p < d+1;
h,(D) = (d+2)n+ ; n—1 (d+2)n,
LTJJ Ide 5 andpﬁm,
d+2)n— . n— (d+2)n
i L%J if d > 2% and p > i
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A Short Proof of
Hadwiger's Conjecture for Degree Sequences
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Definition: k-CDP

o Let (V1, Vs,..., Vi) be a partition of V(G).
o (Vi, Vs, ..., V) is said to be a connected dominating
partition of size k (k-CDP for short)
if for 1 < Vi < k, 3X; : a connected component of G[V]
such that E(X;, V;) # 0 for every j # i.
@ The CDP number of G:
p(G) := max{k| G has a k-CDP}.
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Definition: k-CDP
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Observations on CDP number

Proposition 1
VG, x(G) < p(G).

Proof:
o Let k = x(G), and let Vi,..., Vi be the color classes.

@ Then, for each /i, 3x; € V; s.t. E(x;, V;) # 0 for Vj,
for otherwise we can recolor all vertices of V; without
using color i.

e Put X; = {x;}, then we obtain a k-CDP (V4,..., Vk). O
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Observations on CDP number

Proposition 1
VG, x(G) < p(G).

Proposition 2
VG, h(G) < p(G).

Proof:

o Let k = h(G), and let Xi,..., Xk be disjoint sets of
vertices such that the contraction of X; into v;
(1 < i< k) yields a complete graph on {v1,..., v}.

e Expand each X; into V; to obtain a partition (V4,..., Vi)
of V(G), which is a k-CDP of G. O
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Observations on CDP number

Proposition 1
VG, x(G) < p(G).

Proposition 2
VG, h(G) < p(G).

@ p(D) :=max{p(G) : G has deg. seq. D}.

VD, x(D) < p(D) and h(D) < p(D).
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Theorem 4
VD, h(D) = p(D). Consequently, x(D) < h(D).
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Proof (1/2)

@ We need to prove that h(D) > p(D).
o Let k = p(D) = p(G).
o Let (V4,..., V) be a k-CDP, with a conn. cpt. X; in V..

o If E(X;, X;) # 0 for all pairs i, j, then by contracting each
X; into a single vertex, we obtain a K. Thus,

h(D) > h(G) > k = p(D).

e Otherwise, E(X;, X;) = () for some i, ;.
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Proof (2/2)

Case 1: uju; ¢ E(G) Case 2: uju; € E(G)
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Open Problems

@ Give a short proof of /(D) > x(D).

@ Determine H'(D) for all degree sequences D, or give an
algorithm determining h'(D) for given D.

@ Give a better upper bound for x(D) for (near) regular
degree sequences D.

Our bound x(D) < K - m) nJ for regular degree
sequences is sharp for d € {n—1,n—3,n/2}.

e Consider min{h(G)}, min{H'(G)} and min{x(G)} of the
graphs with a given degree sequence.

Katsuhiro Ota Clique minors, chromatic numbers for degree sequence



