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Definition and Notation

G = (V (G), E(G)) a simple graph,

vertex set V (G) = {v1, · · · , vn}
edge set E(G) = {e1, · · · , em}.

D(G) = diag(d1, · · · , dn) : degree diagonal matrix

di : degree of vertex vi (the number of edges incident to vi).

There are several matrices associated with a graph

A(G) = (aij) : Adjacency matrix of G,

aij = 1 if vi ∼ vj and aij = 0 otherwise.

A(G) is a nonnegative symmetric (0, 1) matrix with the zeros

on the main diagonal.
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Definition and Notation

Laplacian Matrix of a graph

L(G) = D(G)−A(G)

The smallest eigenvalue of L(G) is 0

Fiedler (1973) The second smallest eigenvalue α(G) of L(G)
is called the algebraic connectivity of G.

Theorem 1

(Fiedler 1973) α(G) > 0 if and only if G is connected.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Definition and Notation

Laplacian Matrix of a graph

L(G) = D(G)−A(G)

The smallest eigenvalue of L(G) is 0

Fiedler (1973) The second smallest eigenvalue α(G) of L(G)
is called the algebraic connectivity of G.

Theorem 1

(Fiedler 1973) α(G) > 0 if and only if G is connected.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Definition and Notation

Laplacian Matrix of a graph

L(G) = D(G)−A(G)

The smallest eigenvalue of L(G) is 0

Fiedler (1973) The second smallest eigenvalue α(G) of L(G)
is called the algebraic connectivity of G.

Theorem 1

(Fiedler 1973) α(G) > 0 if and only if G is connected.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Background

Theorem 2

(Fiedler 1973) Let G be a graph with vertex connectivity ν(G),
edge connectivity ν ′(G) and the minimum degree δ(G). Then

α(G) ≤ ν(G) ≤ ν ′(G) ≤ δ(G).

α(G) serves as a measure of connectivity of a graph.
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Background

On combinatorial optimization problems: the problem of

certain flowing process, the maximum cut problem and the

traveling salesman problem.

Fiedler vectors are used in algorithms for distributed memory

parallel processors.

The algebraic connectivity is a measure of the robustness in

complex networks.

Application to Continuous or Digital Space.

Algebraic connectivity may explain the evolution of gene

regulatory networks.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Background

On combinatorial optimization problems: the problem of

certain flowing process, the maximum cut problem and the

traveling salesman problem.

Fiedler vectors are used in algorithms for distributed memory

parallel processors.

The algebraic connectivity is a measure of the robustness in

complex networks.

Application to Continuous or Digital Space.

Algebraic connectivity may explain the evolution of gene

regulatory networks.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Background

On combinatorial optimization problems: the problem of

certain flowing process, the maximum cut problem and the

traveling salesman problem.

Fiedler vectors are used in algorithms for distributed memory

parallel processors.

The algebraic connectivity is a measure of the robustness in

complex networks.

Application to Continuous or Digital Space.

Algebraic connectivity may explain the evolution of gene

regulatory networks.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Background

On combinatorial optimization problems: the problem of

certain flowing process, the maximum cut problem and the

traveling salesman problem.

Fiedler vectors are used in algorithms for distributed memory

parallel processors.

The algebraic connectivity is a measure of the robustness in

complex networks.

Application to Continuous or Digital Space.

Algebraic connectivity may explain the evolution of gene

regulatory networks.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Background

On combinatorial optimization problems: the problem of

certain flowing process, the maximum cut problem and the

traveling salesman problem.

Fiedler vectors are used in algorithms for distributed memory

parallel processors.

The algebraic connectivity is a measure of the robustness in

complex networks.

Application to Continuous or Digital Space.

Algebraic connectivity may explain the evolution of gene

regulatory networks.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Basic properties

α(G) = min
f⊥e,f 6=0

< L(G)f, f >
< f, f >

,

= min
f 6=0,

∑
u∈V f(u)=0

∑
uv∈E(G)(f(u)− f(v))2∑

u∈V f(u)2

where e is all one vector.

If G is a graph of order n. Then

α(G) = n− λmax(G),

where G is the complement of G.

α(G+ e) ≥ α(G).
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Basic properties

α(Kn) = n.

α(Pn) = 2(1− cos π
n
).

α(Cn) = 2(1− cos 2π
n

).

α(Kp,q) = min{p, q}.

α(Persen graph) = 2.
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Two Main techniques

: 1. Nonnegative matrix theory

For a tree T with a vertex v, a branch of T at v is one of the

connected components of T which results from removing

vertex v and all edges incident with it.

Bottleneck matrix of a branch at vertex k: the diagonal block

of L−1
k , where Lk is the principal submatrix of L(G) by

deleting the k−th row and column of L(G).

Perron value of a branch of T at vertex k is the Perron value

(the spectral radius ) of the corresponding bottleneck matrix.

A branch at k is a Perron branch if the Perron value of that

branch is the same as the spectral radius of L−1
k .
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1.Nonnegative matrix theory

Theorem 3

(Kirkland, Neumann and Shader 1996) Let T be a tree on n

verteices{1, · · · , n} If i ∼ j, then T is type II (no component of

an eigenvector of L(T ) corresponding to α(G) is 0) if and only if

there exists a 0 < ε < 1 such that

ρ(M1 − εJ) = ρ(M2 − (1− ε)J), where M1 is the bottleneck

matrix for the branch at j containing i, and M2 is the bottleneck

matrix for the branch at i containing j. Moreover,

α(T ) =
1

ρ(M1 − εJ)
=

1
ρ(M2 − (1− ε)J)

.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

1.Nonnegative matrix theory

Theorem 4

(Kirkland, Neumann and Shader 1996) Let T be a tree on n

verteices{1, · · · , n} If i ∼ j, then T is type I (the k-th component

of an eigenvector of L(T ) corresponding to α(G) is 0) if and only

if there exist two or more Perror branch of T at k. Moreover,

α(T ) =
1

ρ(L−1
k )

.
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1. Nonnegative matrix theory

Theorem 5

(Kirkland and Neumann 1997) Let T be a tree on n vertices

{1, · · · , n} and M be the bottleneck matrix of a branch B of T at

k, which does not contain all of the characteristic vertices of T .

Let T̃ be a tree from T by replacing the branch at k by some other

branch B̃ at k whose bottleneck matrix is M̃ . If M � M̃ (there

exist two permutation matrices P,Q such that PMP T is entrywise

dominated by a principal submatrix of QM̃QT ), then

α(T̃ ) ≤ α(T ).
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2. Graph Transformation

2. Use Graph perturbation.

Theorem 6

(Guo 2010) Let G1 and G2 be two graphs with at least two

vertices, respectively. If G′ is a graph by joining an edge from a

vertex u of G1 and a vertex v of G2, and G′′ is a graph by

identifying u of G1 and v of G2 and adding a pendent edge uw,

then

α(G′) ≤ α(G′′).
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2.Graph Transformation

Theorem 7

(Guo 2010) Let G be a connected graph with at least two vertices.

Let Gk,l be a graph from G by attaching two paths of lengths k, l

respectively, at vertex u of G; and let Gk+1,l−1 be a graph from G

by attaching two paths of lengths k + 1, l − 1 respectively, at

vertex u of G. If k ≥ l ≥ 1, then

α(Gk,l) ≥ α(Gk+1,l−1).
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2.Graph Transformation

Theorem 8

(Shao, Guo, Shan 2008)Let vv1, · · · , vvp be pendant edges of a

connected graph G on n vertices. Let G′ be a graph from G by

adding any 0 ≤ t ≤ p(p−1)

2
edges among v1, · · · , vp. If α(G) 6= 1,

then

α(G) = α(G′).
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2.Graph Transformation

Theorem 9

(Kirkland, Oliveira and Justel 2011) Let G be a graph on vertices

1, · · · , n, and suppose that vertex 1 of G has degree d. Select

p− 1 ≥ 1 vertices of G, say u1, · · · , up−1 none of which is adjacent

to vertex 1 in G. Let H be the graph on vertices 1, · · · , n whose

only edges are those between vertex 1 and each of vertices

u1, · · · , up−1. If G
⋃
H 6= Kn, then α(G

⋃
H)− α(G) ≤ p− ε0,

where ε0 is the smallest positive root of the polynomial

dε(p− ε)− (1− ε)2(p− 1− ε)2.
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Bounds for the algebraic connectivity

Theorem 10

(Fiedler 1973) Let G be a connected graph of order n. Then

2(1− 2 cos
π

n
) ≤ α(G) ≤ n

with the left equality if and only if G is a path,the right equality if

and only if G = Kn

Theorem 11

(Kirkland, Molitierno, Neumann and Shader 2002) Let G be a

connected graph of order n with vertex connectivity ν(G). Then

α(G) ≤ ν(G) with equality if and only if G = G1

∨
G2, where G1

is a disconnected graph of order n− ν(G) and G2 is a graph of

order ν(G) with α(G2) ≥ 2ν(G)− n.
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Bounds for the algebraic connectivity

Theorem 12

(Belhaiza, Abreu, Hansen and Oliveira 2005) Let G be a simple

graph of order n and size m. If G 6= Kn, then

α(G) ≤ b−1 + 2
√

1 + 2m c.

Theorem 13

(Mohar 1992) Let G be a graph of order n with diameter

diam(G). Then

α(G) ≥ 4
ndiam(G)

.
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Bounds for the algebraic connectivity

Theorem 14

(Grone, Merris and Sunder 1990) Let T be a tree with diameter

diam(T ). Then

α(T ) ≤ 2(1− cos
π

diam(T ) + 1
).

Theorem 15

(Molitierno 2006) Let T be a planar graph. Then

α(G) ≤ 4

with equality if and only if G = K4 or G = K2,2,2.
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The dominating number

The dominating number γ(G): The smallest number of |S| such

that for each vertex in G− S is adjacent to one vertex in S ⊆ V .

Theorem 16

(Lu, Liu and Tian 2005) Let G be a connected graph with the

dominating number γ(G). Then

α(G) ≤ n(n− 2γ(G) + 1)
n− γ(G)

with equality if and only if G = K2,2.

Theorem 17

(Nikiforov 2007) Let G be a connected graph of order n with the

dominating number γ(G) > 1. Then α(G) ≤ n− γ(G).
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The dominating number

Theorem 18

(Aouchiche, Hansen and Stevanovic 2010) Let G be a connected

graph of order n with the dominating number γ(G) ≥ 3.

(1) If n = 2k ≥ 6, then α(G) ≤ 2k − 2γ(G) + k+2−
√

k2+4
2

.

(2) If n = 2k+ 1 ≥ 9 with the minimum degree δ(G) ∈ {1, 3, 5} or

δ is even and G /∈ {F6, F7, F8}, then

α(G) ≤ 2k − 2γ(G) +
k+3−

√
(k+1)2+4

2
.
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The dominating number

Conjecture 19

(Aouchiche, Hansen and Stevanovic 2010) Let G be a connected

graph of order n = 2k + 1 with the dominating number γ(G) ≥ 3.

If G /∈ {A3, A4, F6, F7, F8}, then

α(G) ≤ 2k − 2γ(G) +
k + 3−

√
(k + 1)2 + 4
2

.
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The cut-vertex

Theorem 20

(Kirkland 2000, 2001) Let G be a connected graph of order n with

k cut-vertices.

(1) If 2 ≤ k ≤ n
2
, then α(G) ≤ 2(n−k)

n−k+2+
√

(n−k)2+4
. with equality if

and only if G is obtained from Kn−k by attaching a pendant vertex

at each vertex in k vertices of Kn−k.

(2) If k > n
2

and there exist positive integer q and nonnegative

integer l such that k = qn+l
q+1

. Then α(G) ≤ α(El(q,m)), where

El(q,m) is defined as follows: starting with a graph H with m

vertices which has at least r vertices of degree m− 1 for

m ≥ r ≥ l; select r such vertices at each attached a path of q + 1
vertices, at each remaining vertex i of H attaching a path of ji

vertices subject to the condition r +
∑m−r

i=1 (ji − q) = l.
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Tree

Theorem 21

(Z 2004) Let T be a tree on n vertices with independence number

β.

(i) If β = n− 1, then α(T ) ≤ 1 with equality if and only if T is

Tn,n−1, i.e., T is the star K1,n−1.

(ii) If β = n− 2, then α(T ) ≤ α(Tn,n−2), where α(Tn,n−2) is the

smallest root of the following equation

λ3 − (n+ 2)λ2 + (3n− 2)λ− n = 0. Moreover, equality holds if

and only if T is Tn,n−2.

(iii) If β < n− 2, then α(T ) ≤ 3−
√

5
2

with equality if and only if T

is Tn,β.
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Extremal Graphs with Algebraic Connectivity

Extremal graph theory is a branch of graph theory. One is

interested in relations between the various graph invariants,

such as order, size, connectivity, chromatic number, diameter

and eigenvalues, and also in the values of these invariants

which ensure that the graph has certain properties.

Given a property P and an invariant ψ for a class H of

graphs, how to determine the smallest value m for which

every graph G in H with ψ(G) > m has property P and with

ψ(G) = m are called the extremal graphs for the problem.

In other words, for given an invariant ψ for a class H of

graphs, determine all graphs with the maximum (minimum)

values in H.
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Extremal Graphs with Algebraic Connectivity

Theorem 22

(Fallat and Kirkland 1998) Let Tn,d be the set of all trees of order

n with diamter d. The extremal trees that has the minimum

(maximum) algebraic connectivity in Tn,d are unique. Moreover,

this tree is obtained by identifying one pendant vertex of a path

Pd−1 of order d− 1 and the center of K1,bn−d+1
2 c, and the other

pendant vertex of Pd−1 and the center of K1,dn−d+1
2 e (by

identifying one pendant vertex of a path Pd−1 of order d− 1 and

the center of K1,n−d+1).
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Extremal Graphs with Algebraic Connectivity

The girth of a graph G is the length (number of vertices, or

edges) of the shortest cycle in G.

Let Hn,g be the set of all connected graphs of order n and

girth g.

How to determine extremal graphs with the maximum

(minimum) algebraic connectivity in Hn,g.
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Extremal Graphs with Algebraic Connectivity

Conjecture 23

(Fallat and Kirkland 1998) The extremal graphs with the minimum

algebraic connectivity in Hn,g are only lollipop graph Gn,g that is

obtained from g-cycle with a path of length n− g joined at exactly

one vertex on the cycle.

They prove a part result of this conjecture.

Theorem 24

(Fallat and Kirkland 1998) The extremal graphs with the minimum

algebraic connectivity in Hn,3 are only graph G that is obtained

from 3-cycle with a path of length n− 3 joined at exactly one

vertex on the cycle.
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Extremal Graphs with Algebraic Connectivity

Guo 2008 proves this conjecture.

Theorem 25

(Guo 2008) The extremal graphs with the minimum algebraic

connectivity in Hn,g are only graph G that is obtained from g-cycle

with a path of length n− g joined at exactly one vertex on the

cycle.

Fallat and Kirkland (1998) pointed out that determination of the

graph on n vertices with fixed girth g that maximizes the algebraic

connectivity appears to be more difficult.

Now there are part results.
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Extremal Graphs with Algebraic Connectivity

Let Un,g be the set of all unicyclic graphs of order n and girth g.

Theorem 26

(Fallat and Kirkland 1998) The extremal graphs with the

maximum algebraic connectivity in Un,3 are the graph Gn,3 that is

obtained by taking a 3-cycle and appending n− 3 pendant vertices

to a single vertex on the cycle.

Theorem 27

(Fallat, Kirkland and Pati 2003)Fixed a girth g, there exists an N

such that if n > N , then the extremal graphs with the maximum

algebraic connectivity in Un,g is Gn,g. In particular, for g = 4, the

conjecture holds.
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Extremal Graphs with Algebraic Connectivity

Let Mn,m be all connected graphs of given order n and size

m.

(Biyikoglu and Leydold 2012) How to determine the extremal

graphs with the maximum (minimum) algebraic connectivity

in Mn,m?

The problem seems to be more difficult.

For n− 1 ≤ m ≤ n(n−1)

2
− 2, there exists a 1 ≤ t ≤ n− 2

such that

(n− t)(n− t− 1)
2

+ t ≤ (n− t)(n− t− 1)
2

+ n− 2.

Then m = (n−t)(n−t−1)

2
+ t+ p, where 1 ≤ t ≤ n− 2,

1 ≤ p ≤ n− t− 1.
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Extremal Graphs with Algebraic Connectivity

A graph of order n with size m such that

(n− t)(n− t− 1)
2

+ t ≤ m ≤ (n− t)(n− t− 1)
2

+ n− 2

is called (n, p, t) path-complete graph, denoted PCn,p,t if and

only if

(1) the maximal clique of PCn,p,t is Kn−t.

(2) has a path of order Pt+1 = {v0, v1, v2, · · · , vt} such that

v0 ∈ Kn−t

⋂
Pt+1 and v1 is joined to Kn−t by p edges;

(3) there are no other edges.
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Extremal Graphs with Algebraic Connectivity

Conjecture 28

(Belhaiza, Abreu, Hansen and Oliveira 2005) The extremal graphs

with the minimum algebraic connectivity in Mn,m for

n− 1 ≤ m ≤ n(n−1)

2
− 1 are all path-complete graphs.

Conjecture 29

(Belhaiza, Abreu, Hansen and Oliveira 2005) For each n > 3, the

minimum algebraic connectivity of a graph G with n vertices and

m edges is an increasing, piecewise concave function of m.

Moreover, each concave piece corresponds to a family of

path-complete graphs. Finally, for t = 1, α(G) = δ(G), and for

t > 2, α(G) ≤ 1.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Extremal Graphs with Algebraic Connectivity

Theorem 30

(Belhaiza, Abreu, Hansen and Oliveira 2005) For all
(n−1)(n−2)

2
≤ m ≤ n(n−1)

2
, the extremal graphs G with the

maximum algebraic connectivity in Mn,m has the property that the

complement of G is the disjoint union of triangles K3, paths P3,

edges K2 and isolated vertices K1.

Biyikoglu and Leydold (2013)investigate the structure of

connected graphs of given size and order that have minimal

algebraic connectivity.

How about other value of size?
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Extremal Graphs with Algebraic Connectivity

Theorem 30

(Belhaiza, Abreu, Hansen and Oliveira 2005) For all
(n−1)(n−2)

2
≤ m ≤ n(n−1)

2
, the extremal graphs G with the

maximum algebraic connectivity in Mn,m has the property that the

complement of G is the disjoint union of triangles K3, paths P3,

edges K2 and isolated vertices K1.

Biyikoglu and Leydold (2013)investigate the structure of

connected graphs of given size and order that have minimal

algebraic connectivity.

How about other value of size?
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Extremal Graphs with Algebraic Connectivity

In 1941,Turán determined the maximal number of edges of a

graph G which does not contain a copy of the complete graph

Kr+1, which started the research of the extremal theory of

graphs.

Let Tn,r, called Turán graph, be the complete r-partite graph

of order n, and the size of every class of which is dn
r
e or bn

r
c.

Theorem 31

(Turan 1941) Let G be a graph of order n not containing Kr+1.

Then e(G) ≤ e(Tn,r) with equality holding if and only if G = Tn,r,

where e(G) is the number of edges in G.
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Extremal Graphs with Algebraic Connectivity

Erdős and Stone (1946), and Erdős and Simonovits (1966)

expanded the above results.

Let H be the set of graphs and χ(H) be the chromatic

number of H, and let ψ(H) = min{χ(H)|H ∈ H} − 1

Theorem 32

(Erdős-Stone-Simonovits theorem) Let ex(n,H) be the maximum

number of edges of a graph with order n not containing a copy of

any graph in H. If ψ(H) > 1, then

lim
n→∞

ex(n,H)(
n

2

) = 1− 1
ψ(H)

.
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Extremal Graphs with Algebraic Connectivity

Are there similar results for the algebraic connectivity?

Yes. There is an analogy for Erdős-Stone-Simonovits theorem

in spectral graph theory.

Characterize all graphs of order n not containing a complete

subgraph Kr which have the maximum and minimum

algebraic connectivity.
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in spectral graph theory.

Characterize all graphs of order n not containing a complete

subgraph Kr which have the maximum and minimum

algebraic connectivity.



Outline Introduction Two Main techniques Bounds Extremal Random Reference

Extremal Graphs with Algebraic Connectivity

Theorem 33

(Jin and Z 2013) Let α(n,H) be the largest algebraic connectivity

of graphs of order n without containing a copy of any graph H in

H. Then

lim
n→∞

α(n,H)
n

= 1− 1
ψ(H)

,

where ψ(H) = min{ χ(H)| H ∈ H } − 1.
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Extremal Graphs with Algebraic Connectivity

Theorem 34

(Jin znad Z 2013) Let G be a non-complete graph of order n not

containing Kr+1. Then

α(G) ≤ n− dn
r
e = α(Tn,r), (1)

where dae is the least integer no less than a. Moreover, if n = kr

or n = kr + r − 1, then equality (1) holds if and only if G is Turán

graph Tn,r. If n = kr + t, 0 < t < r − 1, then equality (1) holds if

and only if there exist graphs H1, . . . ,Ht of order k + 1 with no

edges and H of order n− (k + 1)t not containing Kr+1−t such

that G = H1 ∨H2 · · · ∨Ht ∨H and α(H) ≥ n− (k + 1)(t+ 1).
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Extremal Graphs with Algebraic Connectivity

Theorem 35

(Jin and Z 2013) Let G be a connected graph with the clique

number r ≥ 2. Then

α(G) ≥ α(Kin,r), (2)

where Kin,r is a kite graph of order n which is obtained by adding

a pendant path of length n− r to a vertex of Kr. Moreover,

equality (2) holds if and only if G = Kin,r.
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Random graphs

G be an ER random graph: For labeling n vertices

{v1, · · · , vn}, the probability that two vertices vi and vj are

adjacent is p and each edge is independent.

Theorem 36

(Juhasz 1991) Let G be an ER random graph of order n with the

probability p. For any ε > 0, we have

α(G) = pn+ o(n1/2+ε), in probability.
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Random graphs

Theorem 37

(Gu, Z and Zhou 2010) Let S(n, c, k) be the small-world network

with n nodes, which is a union of an Erdös-Réyni random graph

G
(
n, c

n

)
and a 2k regular cycle. Then the algebraic connectivity of

S(n, c, k) is almost surely bounded below by

k2c2 log log n
2(k + 1)2 log3 n

. (3)
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Random graphs

Olfati and Saber (2008) defined

γ2(n, c, k) =
λ2(n, c, k)
λ2(n, 0, k)

(4)

to be the algebraic connectivity gain of S(n, c, k).

Theorem 38

(Gu, Z and Zhou 2010) The algebraic connectivity gain of the

small-world network S(n, c, k) follows almost surely inequality

γ2(S(n, c, k)) >
3kc2n2 log log n

2(k + 1)3(2k + 1)π2 log3 n
. (5)
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Random graphs

The above results give a mathematical rigorous estimation of

the lower bound for the algebraic connectivity of the

small-world networks, which is much larger than the algebraic

connectivity of the regular circle.

This result explains why the consensus problems on the

small-world network have a ultrafast convergence rate and

how much it can be improved.

It also characterizes quantitatively what kind of the

small-world networks can be synchronized.
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Thank you very much for
attention!


	Outline
	Introduction
	Two Main techniques
	Bounds 
	Extremal
	Random
	Reference

