Clique minors, chromatic numbers for degree sequence

Katsuhiro Ota

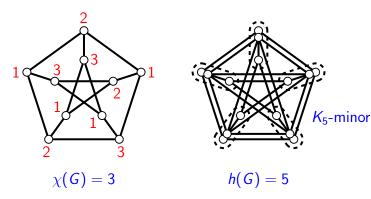
Department of Mathematics, Keio University

Joint work with G. Chen and R. Hazama

Chromatic number and Hadwiger number

Let G be a graph. (We only consider *simple* graphs.)

- $\chi(G)$: the chromatic number of G.
- *h*(*G*): maximum size of clique minors in *G*, called the Hadwiger number of *G*.



Hadwiger's Conjecture (1943)

Every graph with chromatic number k has a K_k -minor. (Equivalently, $\forall G$, $h(G) \ge \chi(G)$.)

Hadwiger's conjecture

- was proved for k = 4 by Dirac (1952);
- for k = 5 implies Four Color Theorem (FCT);
- is affirmative for k = 5 by FCT and Wagner (1937);
- ▶ is affirmative for k = 6 by Robertson, Seymour and Thomas (1993) using FCT;
- is open for $k \ge 7$.

Hadwiger's conjecture for degree sequences

Let $D = (d_1, d_2, \dots, d_n)$ be a degree sequence of a graph. • $\chi(D) := \max{\chi(G) : G \text{ has deg. seq. } D}$.

• $h(D) := \max\{h(G) : G \text{ has deg. seq. } D\}.$

Robertson and Song (2009) posed:

Hadwiger's Conjecture for Degree Sequences

For every degree sequence D, $h(D) \ge \chi(D)$ holds.

• If Hadwiger's conjecture is true, then Hadwiger's conjecture for degree sequences is also true.

Hadwiger's conjecture for degree sequences

Hadwiger's Conjecture for Degree Sequences

For every degree sequence D, $h(D) \ge \chi(D)$ holds.

Theorem (Robertson, Song 2009)

Hadwiger's conjecture for degree sequences is true for all near regular degree sequences.

A degree sequence $D = (d_1, d_2, ..., d_n)$ is said to be near regular if $\max_i \{d_i\} - \min_i \{d_i\} \le 1$.

Recently, Hadwiger's Conjecture for Degree Sequences was confirmed by showing a stronger statement.

Theorem (Dvořák, Mohar 2012+)

For every degree sequence D, $h'(D) \ge \chi(D)$ holds.

- $h'(D) := \max\{h'(G) : G \text{ has deg. seq. } D\}.$
- h'(G): maximum k such that G has a topological K_k-minor.
- A topological K_k -minor of a graph is a subgraph isomorphic to a subdivision of K_k .
- Note: $h(G) \ge h'(G)$, and hence $h(D) \ge h'(D)$.

Note on h'(G): Hajós' number

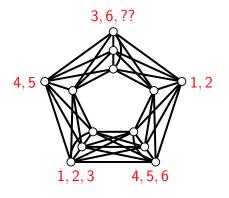
(known as) Hajós' Conjecture

 $\forall G, h'(G) \ge \chi(G).$ (Every graph with $\chi = k$ has a topological K_k -minor.)

Hajós' conjecture

- implies Hadwiger's conjecture, since $h(G) \ge h'(G)$;
- is true for $k \leq 4$ by Dirac (1952);
- for k = 5 implies Four Color Theorem (FCT);
- is false for $k \ge 7$ by Catlin (1979);
- is false for almost all graphs, by Erdős and Fajtlowicz (1981);
- is open for k = 5, 6.

Counterexample to Hajós conjecture



 $\chi(G) = 7 > h'(G) = 6.$

(known as) Hajós' Conjecture

 $\forall G, h'(G) \ge \chi(G).$ (Every graph with $\chi = k$ has a topological K_k -minor.)

Hajós' conjecture

- implies Hadwiger's conjecture, since $h(G) \ge h'(G)$;
- is true for $k \leq 4$ by Dirac (1952);
- for k = 5 implies Four Color Theorem (FCT);
- is false for $k \ge 7$ by Catlin (1979);
- is false for almost all graphs, by Erdős and Fajtlowicz (1981);
- is open for k = 5, 6.

Theorem (Dvořák, Mohar 2013+)

For every degree sequence D, $h'(D) \ge \chi(D)$ holds.

- Their proof involves a lot, and is complicated.
- ► They did not determine the exact values of h'(D) or χ(D).

We shall give

- 1. an alternative and very short proof of $h(D) \ge \chi(D)$; (Unfortunately, our argument does not work for proving $h'(D) \ge \chi(D)$ so far.)
- 2. the exact values of h'(D) for near regular case;
- 3. a good bound for $\chi(D)$ for (near) regular case;

Some Remarks on Hajós' Numbers and Chromatic Numbers for Degree Sequences

Observations

Suppose
$$D = (d_1, d_2, \ldots, d_n)$$
 with $d_1 \ge d_2 \ge \cdots \ge d_n$.

• If h'(D) = k, then we have $d_k \ge k - 1$. This means:

$$h'(D) \leq \max\{k \mid d_k \geq k-1\}.$$

- Note that, h(D) can be as large as \sqrt{n} even when $d_1 = \cdots = d_n = 3$.
- We can greedily color the graph with the degree sequence
 D using at most max{k | d_k ≥ k − 1} colors.
- So if the equality h'(D) = max{k | d_k ≥ k − 1} holds, then we conclude h'(D) ≥ χ(D) as required.
- However, this is not true in general.

Results for regular degree sequences

•
$$D = (d, d, ..., d) = (d^n), (0 \le d \le n - 1, dn : even).$$

• $\overline{d} := n - 1 - d.$

Theorem 1

$$h'(D) = \left\{ egin{array}{cc} d+1 & ext{if } d\leq (n-1)/2; \ \left\lfloor \left(rac{1}{2}+rac{1}{2\overline{d}+2}
ight)n
ight
floor & ext{if } d>(n-1)/2. \end{array}
ight.$$

Theorem 2

$$\chi(D) \leq \begin{cases} d+1 & (\text{if } d \leq (n-1)/2); \\ \left\lfloor \left(\frac{1}{2} + \frac{1}{4\overline{d}+2}\right)n \right\rfloor & \text{if } d > (n-1)/2. \end{cases}$$

Proof (the upper bound for h'(D))

Show that: $h'(D) \leq \left(\frac{1}{2} + \frac{1}{2\overline{d}+2}\right)n.$

- Let G be a d-regular n-vertex graph with h'(G) = k.
- Let X be the set of branch vertices of a top. K_k -minor. Y := V(G) - X.
- Let *r* be the number of nonadjacent pairs in *X*.

•
$$e_{\overline{G}}(X,Y) = \sum_{x \in X} d_{\overline{G}}(x) - 2r = \overline{d}|X| - 2r = \overline{d}k - 2r.$$

- $e_{\overline{G}}(X,Y) \leq \sum_{y \in Y} d_{\overline{G}}(y) = \overline{d}|Y| = \overline{d}(n-k).$
- There are at least r subdividing vertices in Y, hence $r \le |Y| = n k$.

$$\overline{d}(n-k) \ge \overline{d}k - 2r \ge \overline{d}k - 2(n-k),$$

 $(2\overline{d}+2)k \le (\overline{d}+2)n.$

Exact value of h'(D) for near regular case

Theorem 3

$$h'(D) = \begin{cases} d+2 & \text{if } d \leq \frac{n-2}{2} \text{ and } p \geq d+2; \\ d+1 & \text{if } d \leq \frac{n-2}{2} \text{ and } p \leq d+1; \\ \left\lfloor \frac{(\overline{d}+2)n+p}{2\overline{d}+2} \right\rfloor & \text{if } d \geq \frac{n-1}{2} \text{ and } p \leq \frac{(\overline{d}+2)n}{2\overline{d}+1}; \\ \left\lfloor \frac{(\overline{d}+2)n-p}{2\overline{d}} \right\rfloor & \text{if } d \geq \frac{n-1}{2} \text{ and } p > \frac{(\overline{d}+2)n}{2\overline{d}+1}. \end{cases}$$

A Short Proof of Hadwiger's Conjecture for Degree Sequences

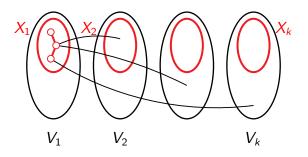
- Let (V_1, V_2, \ldots, V_k) be a partition of V(G).
- (V₁, V₂,..., V_k) is said to be a connected dominating partition of size k (k-CDP for short)

if for $1 \leq \forall i \leq k$, $\exists X_i$: a connected component of $G[V_i]$ such that $E(X_i, V_j) \neq \emptyset$ for every $j \neq i$.

• The CDP number of G:

$$\rho(G) := \max\{k \mid G \text{ has a } k\text{-}\mathsf{CDP}\}.$$

Definition: *k*-CDP



Observations on CDP number

Proposition 1

 $\forall G, \chi(G) \leq \rho(G).$

Proof:

- Let $k = \chi(G)$, and let V_1, \ldots, V_k be the color classes.
- Then, for each i, ∃x_i ∈ V_i s.t. E(x_i, V_j) ≠ Ø for ∀j, for otherwise we can recolor all vertices of V_i without using color i.
- Put $X_i = \{x_i\}$, then we obtain a k-CDP (V_1, \ldots, V_k) . \Box

Observations on CDP number

Proposition 1

$$\forall G, \chi(G) \leq \rho(G).$$

Proposition 2

 $\forall G, h(G) \leq \rho(G).$

Proof:

- Let k = h(G), and let X₁,..., X_k be disjoint sets of vertices such that the contraction of X_i into v_i (1 ≤ i ≤ k) yields a complete graph on {v₁,..., v_k}.
- Expand each X_i into V_i to obtain a partition (V₁,..., V_k) of V(G), which is a k-CDP of G.

Observations on CDP number

Proposition 1

$$\forall G, \chi(G) \leq \rho(G).$$

Proposition 2

 $\forall G, h(G) \leq \rho(G).$

•
$$\rho(D) := \max\{\rho(G) : G \text{ has deg. seq. } D\}.$$

Corollary

$$\forall D, \chi(D) \leq \rho(D) \text{ and } h(D) \leq \rho(D).$$

Theorem 4

$$\forall D, h(D) = \rho(D).$$
 Consequently, $\chi(D) \leq h(D).$

• We need to prove that $h(D) \ge \rho(D)$.

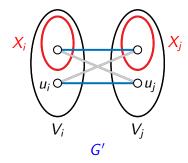
• Let
$$k = \rho(D) = \rho(G)$$
.

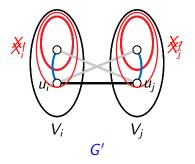
- Let (V_1, \ldots, V_k) be a k-CDP, with a conn. cpt. X_i in V_i .
- If E(X_i, X_j) ≠ Ø for all pairs i, j, then by contracting each X_i into a single vertex, we obtain a K_k. Thus,
 h(D) > h(G) > k = ρ(D).
- Otherwise, $E(X_i, X_j) = \emptyset$ for some i, j.

Proof (2/2)

Case 1: $u_i u_j \notin E(G)$

Case 2: $u_i u_j \in E(G)$





- Give a short proof of $h'(D) \ge \chi(D)$.
- Determine h'(D) for all degree sequences D, or give an algorithm determining h'(D) for given D.
- Give a better upper bound for χ(D) for (near) regular degree sequences D.
 Our bound χ(D) ≤ |(¹/₂ + ¹/_{4d+2})n| for regular degree

sequences is sharp for $d \in \{n-1, n-3, n/2\}$.

Consider min{h(G)}, min{h'(G)} and min{χ(G)} of the graphs with a given degree sequence.