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.. Chromatic number and Hadwiger number

Let G be a graph. (We only consider simple graphs.)

χ(G ): the chromatic number of G .

h(G ): maximum size of clique minors in G , called the
Hadwiger number of G .
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.. Hadwiger’s conjecture

.
Hadwiger’s Conjecture (1943)
..

.

. ..

.

.

Every graph with chromatic number k has a Kk-minor.
(Equivalently, ∀G , h(G ) ≥ χ(G ).)

Hadwiger’s conjecture

▶ was proved for k = 4 by Dirac (1952);

▶ for k = 5 implies Four Color Theorem (FCT);

▶ is affirmative for k = 5 by FCT and Wagner (1937);

▶ is affirmative for k = 6 by Robertson, Seymour and
Thomas (1993) using FCT;

▶ is open for k ≥ 7.
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.. Hadwiger’s conjecture for degree sequences

Let D = (d1, d2, . . . , dn) be a degree sequence of a graph.

χ(D) := max{χ(G ) : G has deg. seq. D}.
h(D) := max{h(G ) : G has deg. seq. D}.

Robertson and Song (2009) posed:
.
Hadwiger’s Conjecture for Degree Sequences
..
.
. ..

.

.

For every degree sequence D, h(D) ≥ χ(D) holds.

If Hadwiger’s conjecture is true, then Hadwiger’s
conjecture for degree sequences is also true.
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.. Hadwiger’s conjecture for degree sequences

.
Hadwiger’s Conjecture for Degree Sequences
..
.
. ..

.

.

For every degree sequence D, h(D) ≥ χ(D) holds.

.
Theorem (Robertson, Song 2009)
..

.

. ..

.

.

Hadwiger’s conjecture for degree sequences is true for all near
regular degree sequences.

A degree sequence D = (d1, d2, . . . , dn) is said to be near
regular if maxi{di} −mini{di} ≤ 1.
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.. Dvǒrák and Mohar have proved!

Recently, Hadwiger’s Conjecture for Degree Sequences was
confirmed by showing a stronger statement.
.
Theorem (Dvǒrák, Mohar 2012+)
..
.
. ..

.

.

For every degree sequence D, h′(D) ≥ χ(D) holds.

h′(D) := max{h′(G ) : G has deg. seq. D}.
h′(G ): maximum k such that G has a topological
Kk-minor.

A topological Kk-minor of a graph is a subgraph
isomorphic to a subdivision of Kk .

Note: h(G ) ≥ h′(G ), and hence h(D) ≥ h′(D).
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.. Note on h′(G ): Hajós’ number

.
(known as) Hajós’ Conjecture
..

.

. ..

.

.

∀G , h′(G ) ≥ χ(G ).
(Every graph with χ = k has a topological Kk-minor.)

Hajós’ conjecture

▶ implies Hadwiger’s conjecture, since h(G ) ≥ h′(G );

▶ is true for k ≤ 4 by Dirac (1952);

▶ for k = 5 implies Four Color Theorem (FCT);

▶ is false for k ≥ 7 by Catlin (1979);

▶ is false for almost all graphs, by Erdős and Fajtlowicz
(1981);

▶ is open for k = 5, 6.
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.. Counterexample to Hajós conjecture

1, 2, 3 4, 5, 6

4, 5 1, 2

3, 6, ??

χ(G ) = 7 > h′(G ) = 6.
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.. Hajós’ conjecture

.
(known as) Hajós’ Conjecture
..

.

. ..

.

.

∀G , h′(G ) ≥ χ(G ).
(Every graph with χ = k has a topological Kk-minor.)

Hajós’ conjecture

▶ implies Hadwiger’s conjecture, since h(G ) ≥ h′(G );

▶ is true for k ≤ 4 by Dirac (1952);

▶ for k = 5 implies Four Color Theorem (FCT);

▶ is false for k ≥ 7 by Catlin (1979);

▶ is false for almost all graphs, by Erdős and Fajtlowicz
(1981);

▶ is open for k = 5, 6.
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.. Dvǒrák and Mohar’s Result

.
Theorem (Dvǒrák, Mohar 2013+)
..
.
. ..

.

.

For every degree sequence D, h′(D) ≥ χ(D) holds.

▶ Their proof involves a lot, and is complicated.

▶ They did not determine the exact values of h′(D) or
χ(D).

We shall give

1. an alternative and very short proof of h(D) ≥ χ(D);
(Unfortunately, our argument does not work for proving

h′(D) ≥ χ(D) so far. )

2. the exact values of h′(D) for near regular case;

3. a good bound for χ(D) for (near) regular case;
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Some Remarks on

Hajós’ Numbers and Chromatic Numbers

for Degree Sequences
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.. Observations

Suppose D = (d1, d2, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn.

If h′(D) = k , then we have dk ≥ k − 1. This means:

h′(D) ≤ max{k | dk ≥ k − 1}.

Note that, h(D) can be as large as
√
n even when

d1 = · · · = dn = 3.

We can greedily color the graph with the degree sequence
D using at most max{k | dk ≥ k − 1} colors.

So if the equality h′(D) = max{k | dk ≥ k − 1} holds,
then we conclude h′(D) ≥ χ(D) as required.

However, this is not true in general.
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.. Results for regular degree sequences

D = (d , d , . . . , d) = (dn), (0 ≤ d ≤ n − 1, dn : even).

d := n − 1− d .

.
Theorem 1
..

.

. ..

.

.

h′(D) =

 d + 1 if d ≤ (n − 1)/2;⌊(
1
2
+ 1

2d+2

)
n
⌋

if d > (n − 1)/2.

.
Theorem 2
..

.

. ..

.

.

χ(D) ≤

 d + 1 (if d ≤ (n − 1)/2);⌊(
1
2
+ 1

4d+2

)
n
⌋

if d > (n − 1)/2.
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.. Proof (the upper bound for h′(D))

Show that: h′(D) ≤
(
1
2 + 1

2d+2

)
n.

Let G be a d-regular n-vertex graph with h′(G ) = k .

Let X be the set of branch vertices of a top. Kk-minor.
Y := V (G )− X .

Let r be the number of nonadjacent pairs in X .

eG (X ,Y ) =
∑

x∈X dG (x)− 2r = d |X | − 2r = dk − 2r .

eG (X ,Y ) ≤
∑

y∈Y dG (y) = d |Y | = d(n − k).

There are at least r subdividing vertices in Y , hence
r ≤ |Y | = n − k .

d(n − k) ≥ dk − 2r ≥ dk − 2(n − k),

(2d + 2)k ≤ (d + 2)n. □
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.. Exact value of h′(D) for near regular case

D = ((d + 1)p, dn−p)
(0 ≤ d ≤ n − 1, 0 ≤ p ≤ n − 1, dn + p : even).

d := n − 1− d .

.
Theorem 3
..

.

. ..

.

.

h′(D) =



d + 2 if d ≤ n−2
2

and p ≥ d + 2;

d + 1 if d ≤ n−2
2

and p ≤ d + 1;⌊
(d+2)n+p

2d+2

⌋
if d ≥ n−1

2
and p ≤ (d+2)n

2d+1
;⌊

(d+2)n−p

2d

⌋
if d ≥ n−1

2
and p > (d+2)n

2d+1
.
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A Short Proof of

Hadwiger’s Conjecture for Degree Sequences
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.. Definition: k-CDP

Let (V1,V2, . . . ,Vk) be a partition of V (G ).

(V1,V2, . . . ,Vk) is said to be a connected dominating
partition of size k (k-CDP for short)

if for 1 ≤ ∀i ≤ k , ∃Xi : a connected component of G [Vi ]
such that E (Xi ,Vj) ̸= ∅ for every j ̸= i .

The CDP number of G :

ρ(G ) := max{k |G has a k-CDP}.
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.. Definition: k-CDP

V1 V2 Vk

X1 X2 Xk
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.. Observations on CDP number

.
Proposition 1
..
.
. ..

.

.

∀G , χ(G ) ≤ ρ(G ).

Proof:

Let k = χ(G ), and let V1, . . . ,Vk be the color classes.

Then, for each i , ∃xi ∈ Vi s.t. E (xi ,Vj) ̸= ∅ for ∀j ,
for otherwise we can recolor all vertices of Vi without
using color i .

Put Xi = {xi}, then we obtain a k-CDP (V1, . . . ,Vk). □
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.. Observations on CDP number

.
Proposition 1
..
.
. ..

.

.

∀G , χ(G ) ≤ ρ(G ).

.
Proposition 2
..
.
. ..

.

.

∀G , h(G ) ≤ ρ(G ).

Proof:

Let k = h(G ), and let X1, . . . ,Xk be disjoint sets of
vertices such that the contraction of Xi into vi
(1 ≤ i ≤ k) yields a complete graph on {v1, . . . , vk}.
Expand each Xi into Vi to obtain a partition (V1, . . . ,Vk)
of V (G ), which is a k-CDP of G . □
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.. Observations on CDP number

.
Proposition 1
..
.
. ..

.

.

∀G , χ(G ) ≤ ρ(G ).

.
Proposition 2
..
.
. ..

.

.

∀G , h(G ) ≤ ρ(G ).

ρ(D) := max{ρ(G ) : G has deg. seq. D}.
.
Corollary
..
.
. ..

.

.

∀D, χ(D) ≤ ρ(D) and h(D) ≤ ρ(D).
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.. Main Theorem

.
Theorem 4
..
.
. ..

.

.

∀D, h(D) = ρ(D). Consequently, χ(D) ≤ h(D).
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.. Proof (1/2)

We need to prove that h(D) ≥ ρ(D).

Let k = ρ(D) = ρ(G ).

Let (V1, . . . ,Vk) be a k-CDP, with a conn. cpt. Xi in Vi .

If E (Xi ,Xj) ̸= ∅ for all pairs i , j , then by contracting each
Xi into a single vertex, we obtain a Kk . Thus,

h(D) ≥ h(G ) ≥ k = ρ(D).

Otherwise, E (Xi ,Xj) = ∅ for some i , j .
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.. Proof (2/2)

Case 1: uiuj /∈ E (G )

G ′
Vi Vj

Xi Xj

ui uj

Case 2: uiuj ∈ E (G )

Vi Vj

ui uj

Xi XjX ′
i X ′

j

G ′
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.. Open Problems

Give a short proof of h′(D) ≥ χ(D).

Determine h′(D) for all degree sequences D, or give an
algorithm determining h′(D) for given D.

Give a better upper bound for χ(D) for (near) regular
degree sequences D.

Our bound χ(D) ≤
⌊(

1
2
+ 1

4d+2

)
n
⌋
for regular degree

sequences is sharp for d ∈ {n − 1, n − 3, n/2}.
Consider min{h(G )}, min{h′(G )} and min{χ(G )} of the
graphs with a given degree sequence.
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