The path-distance-width of hypercubes

Yota Otachi

Japan Advanced Institute of Science and Technology

Hakata Workshop 2013. January 26

Outline

- Motivation
- Path-distance-width
- Lower bounds on width parameters of hypercubes
- Our result

Proof

- Upper bound
- Lower bound
- Applying the lower bound to hypercubes

Concluing remarks

Conclusion

Hypercube

Definition (Hyercube)

The *d*-dimensional hypercube Q_d , or *d*-cube, is the graph with

- $V(Q_d)$ = the set of all binary strings of length d,
- $E(Q_d)$ = the pairs of strings of Hamming distance 1.

Properties of hypercubes

- $|V(Q_d)| = 2^d$, $|E(Q_d)| = d \cdot 2^{d-1}$ (:: Q_d is d-regular)
- diameter of Q_d is d (attained by 0^d and 1^d)

We study a width parameter of hypercubes.

Width parameters of graphs

Several width parameters are studied in algorithmic graph theory

Parameters from industrial applications

- Band-width: minimizing maximum dilation in a linear circuit
- Cut-width: minimizing maximum congestion in a linear circuit

Graph minor related parameters

- Tree-width: measures how close a graph is to a tree
- Path-width: measures how close a graph is to a path
- Branch-width, Carving-width, etc.

Many intractable graph problems become easy for graphs of bounded width parameters.

Our width parameter

• Path-distance-width: minimizing the width of BFS

Width parameters of hypercubes

Width parameters of hypercubes

Studies on width parameters of hypercubes give better understanding on these parameters. This is because:

- Usually, hypercubes have large width parameters;
- But basic tools (for I.b.) do not work for hypercubes (eg. degree);
- Thus wee need a nice tool for a good lower bound;

Known results

- Cut-width (e) by [Harper (1964)]
- Band-width (e) by [Harper (1966)]
- Path-width (e) and Treewidth (a) by [Chandran & Kavitha (2006)]
- Carving-width (e) by [Chandran & Kavitha (2006)]

e: exact, a: asymptotic

Definition: Path-distance-width (1 of 2)

Definition (Distance structure) $D(S) = (L_0, ..., L_t)$ is a distance structure of *G* rooted at *S* if • $\bigcup_{0 \le i \le t} L_i = V(G)$, and • $L_i = \{v \in V(G) \mid d(S, v) = i\}$, where $d(S, v) = \min_{u \in S} d(u, v)$.

Definition: Path-distance-width (2 of 2)

Definition (Path-distance-width)

The path-distance-width of G with initial set S, denoted $pdw_S(G)$, is

$$\mathsf{pdw}_S(G) = \max_{L_i \in D_G(S)} |L_i|.$$

The path-distance-width of G is defined as

$$\operatorname{pdw}(G) = \min_{S \subseteq V(G)} \operatorname{pdw}_S(G).$$

* pdw is defined for connected graphs only.

The path-distance-width of hypercubes

Some algorithmic results are known.

- Introduced to study the graph isomorphism problem [Yamazaki, Bodlaender, de Fluiter, Thilikos (1997)]
 - Determining the pdw of a graph is NP-hard
 - For pdw bounded graphs, GI can be solved in poly time.
- Approximation hardness for trees [Yamazaki (2001)]
- Constant-factor approximation algorithms for graphs with path-like structures [O. et al. (2011)]
- An improved algorithm for the graph isomorphism problem [O. (2012)]
 - For a subclass of the class of pdw bounded graphs, GI can be solved in FPT time.

Vertex- and edge-boundaries

Definition (Vertex-boundary)

Let G be a graph, $X \subseteq V(G)$, and $s \in \{1, \ldots, |V(G)|\}$.

- Vertex boundary: $\partial_v(X) = \{v \in V(G) \setminus X \mid \exists u \in X, \{u, v\} \in E(G)\}$
- Vertex isoperimetric value: $\partial_{v}(s) = \min_{|X|=s} |\partial_{v}(X)|$

* Edge boundry ∂_e is defined analogously.

In this example, $\partial_{\nu}(3) = 2$.

Isoperimetric value based lower bounds

The following lower bounds are developed to determine the width parameters of hypercubes, but hold for any graphs.

Theorem (Chandran & Subramanian (2005))

 $tree-width(G) \ge \min_{s/2 \le i \le s} \partial_v(i)$ for any $s \le |V(G)|$.

Theorem (Chandran & Kavitha (2006))

 $carving\text{-width}(G) \ge \min_{s/2 \le i \le s} \partial_e(i) \quad \text{ for any } s \le |V(G)|.$

We present a lower bound in a similar form:

Theorem

For any w and s with
$$w \le s \le |V(G)|$$
,
 $pdw(G) \ge \min \left\{ w, \min_{s-w \le i \le s} \partial_v(i) \right\}.$

We present a general lower bound on path-distance-width of graphs, and determine the path-distance-width of hypcubes by applying the bound.

Theorem (General lower bound)
For any w and s with
$$w \le s \le |V(G)|$$
,
 $pdw(G) \ge \min \left\{ w, \min_{s-w \le i \le s} \partial_v(i) \right\}.$

Theorem (The path-distance-width of hypercubes) For any d,

$$\mathsf{pdw}(Q_d) = \binom{d}{\lfloor d/2 \rfloor}.$$

Upper bound

The upper bound can be achieved by taking only one vertex.

Lemma

$$\mathsf{pdw}(Q_d) \leq \binom{d}{\lfloor d/2 \rfloor}.$$

Proof.

Let $D(\{0^d\}) = (L_0, ..., L_t)$ is the distance structure rooted at $\{0^d\}$. Then $L_i = \{u \in Q_d \mid i \text{ has exactly } i \text{ non-zero entries}\}.$ Thus $\max_i |L_i| = \max_i \binom{d}{i} = \binom{d}{|d/2|}$.

YOTA UTACHI (JAIST)

i ne bath-distance-width of hybercu

We have two general lower bounds. They are too weak for hypecubes.

Lemma

For any connected graph G with minimum degree $\delta(G)$, pdw(G) $\geq (\delta(G) + 1)/2$.

$$\implies$$
 pdw $(Q_d) \ge (d+1)/2$.

Lemma

For any connected graph G with diameter diam(G), $pdw(G) \ge |V(G)|/(diam(G) + 1)$.

 $\implies \mathsf{pdw}(Q_d) \ge 2^d/(d+1).$ $\binom{d}{d/2} \sim 2^d/\sqrt{\pi d/2}$

Lower bound

Theorem

For any w and s with $w \le s \le |V(G)|$, path-distance-width(G) $\ge \min \left\{ w, \min_{s-w \le i \le s} \partial_v(i) \right\}$.

Finding a fat rectangle below the red line.

• width = w

• height = $\min_{s-w \le i \le s} \partial_v(i)$

min{width, height} gives a l.b.

Blue rectangle: 700×160 Green rectangle: 350×250

Proof of the lower bound

Remark

Let $(L_0, ..., L_t)$ be a distance structure of G. Then, for any $j \le t - 1$, $\partial(\bigcup_{i=0}^{j} L_i) = L_{j+1}$.

Theorem

For any w and s with
$$w \le s \le |V(G)|$$
,
path-distance-width(G) $\ge \min \left\{ w, \min_{s-w \le i \le s} \partial_v(i) \right\}$.

Proof.

Let (L_0, \ldots, L_t) be a distance structure of *G*.

•
$$|\bigcup_{i=0}^{j} L_i| \in \{s - w, \dots, s\}$$
 for some $j \implies |L_{j+1}| \ge \min_{s - w \le i \le s} \partial_v(i)$.

• Otherwise,
$$\exists j \text{ s.t. } |\bigcup_{i=0}^{j} L_i| < s - w \text{ and } |\bigcup_{i=0}^{j} L_i \cup L_{j+1}| > s.$$

Isoperimetric ordering for hypercubes

For a binary string u, let pop(u) denote the number of 1's in u.

Definition (Simplicial ordering)

The *simplicial ordering* < on the binary strings of length *d* is an odering such that $u_1u_2...u_d < v_1v_2...v_d \iff pop(u) < pop(v)$, or pop(u) = pop(v) and there exists *j* s.t. $u_j > v_j$ and $u_i = v_i$ for i < j.

eg: 000 < 100 < 010 < 001 < 110 < 101 < 011 < 111

Theorem (Harper 1966)

Let X_s be the set of the first s vertices of Q_d in the simplicial order. Then $\partial_v(s) = |\partial_v(X_s)|$.

The above theorem is developed to determine the band-width of Q_d

Theorem (Harper 1966 and Wang, Wu, Dumitrescu 2009)

band-width(Q_d) = $\sum_{i=0}^{d-1} {i \choose \lfloor i/2 \rfloor}$.

Ploting isoperimetric values of Q_d

We know: $pdw(Q_d) \leq \begin{pmatrix} d \\ |d/2| \end{pmatrix}$

Task: finding the widest rectangle with height $\begin{pmatrix} d \\ \lfloor d/2 \rfloor \end{pmatrix}$ below the red line.

Let $s = \sum_{i=0}^{\lfloor d/2 \rfloor} {i \choose \lfloor i/2 \rfloor}$ and $w = {d \choose \lfloor d/2 \rfloor}$. We can show that, for $s - w \le i \le s$, $\partial_v(i) \ge {d \choose \lfloor d/2 \rfloor}$ by exploiting the structure of the simplicial ordering.

There is a shortcut. Let $f(m) = \sum_{i=1}^{m/2} {\binom{2i-1}{i}}$ for even *m*.

Theorem (Kleitman 1986)

If d is even and
$$s \in \{2^{d-1} - \frac{1}{2} \binom{d}{d/2} - f(d) + 1, \dots, 2^{d-1} + f(d-2)\}$$
 or d is odd and $s \in \{2^{d-1} - f(d+1) + 1, \dots, 2^{d-1} + f(d-1)\}$, then $\partial_v(s) \ge \binom{d}{d/2}$.

It suffices to show that these ranges are wide enough \leftarrow just a routine task.

Conclusion

Theorem (General lower bound)

For any w and s with $w \le s \le |V(G)|$, $pdw(G) \ge \min\left\{w, \min_{s-w \le i \le s} \partial_{v}(i)\right\}$.

Theorem (The path-distance-width of hypercubes)

For any d, $pdw(Q_d) = \begin{pmatrix} d \\ \lfloor d/2 \rfloor \end{pmatrix}$.

More applications of the lower bound?

- For grids (Cartesian products of paths), the generalized simplicial ordering gives isoperimetric values.
- For even tori (Cartesian products of cycles of even length), the generalized simplicial ordering gives isoperimetric values.
- For Hamming graphs (Cartesian products of complete graphs), no such ordering is known.

Other (more applicable) lower bounds?

Thank you!