The path-distance-width of hypercubes

Yota Otachi

Japan Advanced Institute of Science and Technology
Hakata Workshop 2013. January 26

Outline

(1) Introduction

- Motivation
- Path-distance-width
- Lower bounds on width parameters of hypercubes
- Our result
(2) Proof
- Upper bound
- Lower bound
- Applying the lower bound to hypercubes
(3) Concluing remarks
- Conclusion

Hypercube

Definition (Hyercube)

The d-dimensional hypercube Q_{d}, or d-cube, is the graph with

- $V\left(Q_{d}\right)=$ the set of all binary strings of length d,
- $E\left(Q_{d}\right)=$ the pairs of strings of Hamming distance 1 .

Properties of hypercubes

- $\left|V\left(Q_{d}\right)\right|=2^{d},\left|E\left(Q_{d}\right)\right|=d \cdot 2^{d-1} \quad\left(\because Q_{d}\right.$ is d-regular $)$
- diameter of Q_{d} is $d \quad$ (attained by 0^{d} and 1^{d})

We study a width parameter of hypercubes.

Width parameters of graphs

Several width parameters are studied in algorithmic graph theory

Parameters from industrial applications

- Band-width: minimizing maximum dilation in a linear circuit
- Cut-width: minimizing maximum congestion in a linear circuit

Graph minor related parameters

- Tree-width: measures how close a graph is to a tree
- Path-width: measures how close a graph is to a path
- Branch-width, Carving-width, etc.

Many intractable graph problems become easy for graphs of bounded width parameters.

Our width parameter

- Path-distance-width: minimizing the width of BFS

Width parameters of hypercubes

Width parameters of hypercubes

Studies on width parameters of hypercubes give better understanding on these parameters. This is because:

- Usually, hypercubes have large width parameters;
- But basic tools (for l.b.) do not work for hypercubes (eg. degree);
- Thus wee need a nice tool for a good lower bound;

Known results

- Cut-width (e) by [Harper (1964)]
- Band-width (e) by [Harper (1966)]
- Path-width (e) and Treewidth (a) by [Chandran \& Kavitha (2006)]
- Carving-width (e) by [Chandran \& Kavitha (2006)]
e: exact, a: asymptotic

Definition: Path-distance-width (1 of 2)

Definition (Distance structure)
$D(S)=\left(L_{0}, \ldots, L_{t}\right)$ is a distance structure of G rooted at S if

- $\cup_{0 \leq i \leq t} L_{i}=V(G)$, and
- $L_{i}=\{v \in V(G) \mid d(S, v)=i\}$,
where $d(S, v)=\min _{u \in S} d(u, v)$.

Definition: Path-distance-width (2 of 2)

Definition (Path-distance-width)

The path-distance-width of G with initial set S, denoted $\operatorname{pdw}_{S}(G)$, is

$$
\operatorname{pdw}_{S}(G)=\max _{L_{i} \in D_{G}(S)}\left|L_{i}\right|
$$

The path-distance-width of G is defined as

$$
\operatorname{pdw}(G)=\min _{S \subseteq V(G)} \operatorname{pdw}_{S}(G)
$$

* pdw is defined for connected graphs only.

History of path-distance-width

Some algorithmic results are known.

- Introduced to study the graph isomorphism problem [Yamazaki, Bodlaender, de Fluiter, Thilikos (1997)]
- Determining the pdw of a graph is NP-hard
- For pdw bounded graphs, GI can be solved in poly time.
- Approximation hardness for trees [Yamazaki (2001)]
- Constant-factor approximation algorithms for graphs with path-like structures [O. et al. (2011)]
- An improved algorithm for the graph isomorphism problem [O. (2012)]
- For a subclass of the class of pdw bounded graphs, Gl can be solved in FPT time.

Vertex- and edge-boundaries

Definition (Vertex-boundary)

Let G be a graph, $X \subseteq V(G)$, and $s \in\{1, \ldots,|V(G)|\}$.

- Vertex boundary: $\partial_{v}(X)=\{v \in V(G) \backslash X \mid \exists u \in X,\{u, v\} \in E(G)\}$
- Vertex isoperimetric value: $\partial_{v}(s)=\min _{|X|=s}\left|\partial_{v}(X)\right|$
* Edge boundry ∂_{e} is defined analogously.

In this example, $\partial_{\nu}(3)=2$.

Isoperimetric value based lower bounds

The following lower bounds are developed to determine the width parameters of hypercubes, but hold for any graphs.

```
Theorem (Chandran & Subramanian (2005))
tree-width(G)\geq\mp@subsup{m}{s/2\leqi\leqs}{}\mp@subsup{\partial}{v}{}(i)\quad\mathrm{ for any s }\leq|V(G)|.
```

Theorem (Chandran \& Kavitha (2006))
carving-width $(G) \geq \min _{s / 2 \leq i \leq s} \partial_{e}(i) \quad$ for any $s \leq|V(G)|$.
We present a lower bound in a similar form:

Theorem

For any w and s with $w \leq s \leq|V(G)|$,

$$
\operatorname{pdw}(G) \geq \min \left\{w, \min _{s-w \leq i \leq s} \partial_{v}(i)\right\} .
$$

Our reulst

We present a general lower bound on path-distance-width of graphs, and determine the path-distance-width of hypcubes by applying the bound.

Theorem (General lower bound)
For any w and s with $w \leq s \leq|V(G)|$,

$$
\operatorname{pdw}(G) \geq \min \left\{w, \min _{s-w \leq i \leq s} \partial_{v}(i)\right\} .
$$

Theorem (The path-distance-width of hypercubes)
For any d,

$$
\operatorname{pdw}\left(Q_{d}\right)=\binom{d}{\lfloor d / 2\rfloor} .
$$

Upper bound

The upper bound can be achieved by taking only one vertex.
Lemma

$$
\operatorname{pdw}\left(Q_{d}\right) \leq\binom{ d}{\lfloor d / 2\rfloor} .
$$

Proof.

Let $D\left(\left\{0^{d}\right\}\right)=\left(L_{0}, \ldots, L_{t}\right)$ is the distance structure rooted at $\left\{0^{d}\right\}$. Then $L_{i}=\left\{u \in Q_{d} \mid i\right.$ has exactly i non-zero entries $\}$.
Thus $\max _{i}\left|L_{i}\right|=\max _{i}\binom{d}{i}=\binom{d}{(d / 2]}$.

$$
\operatorname{pdw}\left(Q_{4}\right) \leq\binom{ 4}{\lfloor 4 / 2\rfloor}=6 \quad \operatorname{pdw}\left(Q_{5}\right) \leq\binom{ 5}{\lfloor 5 / 2\rfloor}=10
$$

Naïve lower bounds

We have two general lower bounds. They are too weak for hypecubes.

Lemma

For any connected graph G with minimum degree $\delta(G)$,

$$
\operatorname{pdw}(G) \geq(\delta(G)+1) / 2
$$

$\Longrightarrow \operatorname{pdw}\left(Q_{d}\right) \geq(d+1) / 2$.

Lemma

For any connected graph G with diameter $\operatorname{diam}(G)$,

$$
\operatorname{pdw}(G) \geq|V(G)| /(\operatorname{diam}(G)+1)
$$

$$
\Longrightarrow \operatorname{pdw}\left(Q_{d}\right) \geq 2^{d} /(d+1) . \quad\binom{d}{d / 2} \sim 2^{d} / \sqrt{\pi d / 2}
$$

Lower bound

Theorem
For any w and s with $w \leq s \leq|V(G)|$,

$$
\text { path-distance-width }(G) \geq \min \left\{w, \min _{s-w \leq i \leq s} \partial_{v}(i)\right\} \text {. }
$$

Finding a fat rectangle below the red line.

- width $=w$
- height $=\min _{s-w \leq i \leq s} \partial_{v}(i)$ $\min \{$ width, height\} gives a I.b.

Blue rectangle: 700×160 Green rectangle: 350×250

Proof of the lower bound

Remark

Let $\left(L_{0}, \ldots, L_{t}\right)$ be a distance structure of G. Then, for any $j \leq t-1$,

$$
\partial\left(\cup_{i=0}^{j} L_{i}\right)=L_{j+1} .
$$

Theorem

For any w and s with $w \leq s \leq|V(G)|$,

$$
\text { path-distance-width }(G) \geq \min \left\{w, \min _{s-w \leq i \leq s} \partial_{v}(i)\right\} \text {. }
$$

Proof.

Let $\left(L_{0}, \ldots, L_{t}\right)$ be a distance structure of G.

- $\left|\cup_{i=0}^{j} L_{i}\right| \in\{s-w, \ldots, s\}$ for some $j \Longrightarrow\left|L_{j+1}\right| \geq \min _{s-w \leq i \leq s} \partial_{v}(i)$.
- Otherwise, $\exists j$ s.t. $\left|\bigcup_{i=0}^{j} L_{i}\right|<s-w$ and $\left|\bigcup_{i=0}^{j} L_{i} \cup L_{j+1}\right|>s$.

Isoperimetric ordering for hypercubes

For a binary string u, let $\operatorname{pop}(u)$ denote the number of 1 's in u.

Definition (Simplicial ordering)

The simplicial ordering $<$ on the binary strings of length d is an odering such that $u_{1} u_{2} \ldots u_{d}<v_{1} v_{2} \ldots v_{d} \Longleftrightarrow \operatorname{pop}(u)<\operatorname{pop}(v)$, or $\operatorname{pop}(u)=\operatorname{pop}(v)$ and there exists j s.t. $u_{j}>v_{j}$ and $u_{i}=v_{i}$ for $i<j$.
eg: $000<100<010<001<110<101<011<111$
Theorem (Harper 1966)
Let X_{s} be the set of the first s vertices of Q_{d} in the simplicial order. Then

$$
\partial_{v}(s)=\left|\partial_{v}\left(X_{s}\right)\right| .
$$

The above theorem is developed to determine the band-width of Q_{d}
Theorem (Harper 1966 and Wang, Wu, Dumitrescu 2009)

$$
\text { band-width }\left(Q_{d}\right)=\sum_{i=0}^{d-1}\binom{i}{i / 2\rfloor} .
$$

Ploting isoperimetric values of Q_{d}

We know: $\operatorname{pdw}\left(Q_{d}\right) \leq\binom{ d}{\lfloor d / 2\rfloor}$
Task: finding the widest rectangle with height $\binom{d}{\lfloor d / 2\rfloor}$ below the red line.

Proof of the lower bound

Let $s=\sum_{i=0}^{\lfloor d / 2\rfloor}\binom{i}{\lfloor i / 2\rfloor}$ and $w=\binom{d}{\lfloor d / 2\rfloor}$. We can show that, for $s-w \leq i \leq s$, $\partial_{v}(i) \geq\binom{ d}{\lfloor d / 2\rfloor}$ by exploiting the structure of the simplicial ordering.

There is a shortcut. Let $f(m)=\sum_{i=1}^{m / 2}\binom{2 i-1}{i}$ for even m.

Theorem (Kleitman 1986)

If d is even and $s \in\left\{2^{d-1}-\frac{1}{2}\binom{d}{d / 2}-f(d)+1, \ldots, 2^{d-1}+f(d-2)\right\}$ or d is odd and $s \in\left\{2^{d-1}-f(d+1)+1, \ldots, 2^{d-1}+f(d-1)\right\}$, then

$$
\partial_{v}(s) \geq\binom{ d}{d / 2} .
$$

It suffices to show that these ranges are wide enough \Longleftarrow just a routine task.

Conclusion

Theorem (General lower bound)

For any w and s with $w \leq s \leq|V(G)|, \operatorname{pdw}(G) \geq \min \left\{w, \min _{s-w \leq \leq \leq} \partial_{v}(i)\right\}$.
Theorem (The path-distance-width of hypercubes)
For any $d, \operatorname{pdw}\left(Q_{d}\right)=\binom{d}{(d / 2]}$.
More applications of the lower bound?

- For grids (Cartesian products of paths), the generalized simplicial ordering gives isoperimetric values.
- For even tori (Cartesian products of cycles of even length), the generalized simplicial ordering gives isoperimetric values.
- For Hamming graphs (Cartesian products of complete graphs), no such ordering is known.
Other (more applicable) lower bounds?
Thank you!

